0 votes
in Marketing News by (300 points)

Flexible ureteroscopy update: indications, instrumentation and technical advances

Retrograde ureteroscopy has recently gained a broadened indication for use from diagnostic to a variety of complex minimally invasive therapies. This review aims to look at the recent advances in the instrumentation and accessories, the widened indications of its use, surgical techniques and complications. With minimization of ureteroscopic instruments manufacturers are challenged to develop new, smaller and sturdier instruments that all will also survive the rigors of surgical therapy.

Ureteroscopy is defined as retrograde instrumentation performed with an endoscope passed through the lower urinary tract directly into the ureter and calyceal system.[1] With the addition of actively deflectable, flexible endoscopes the indications for ureteral access sheath have broadened from diagnostic to a variety of complex minimally invasive therapies. Current ureteroscopic treatments include intracorporeal lithotripsy (by far the most common), treatment of upper urinary tract urothelial malignancies, incising strictures, evaluation of ureteral trauma, and repairing ureteropelvic junction obstructions.[2,3] With improved instrumentation and incorporation of technologies such as a large endoscope working channel and active tip deflection, the evolution of surgical techniques have broadened while the complications noted with ureteropyeloscopy have actually decreased significantly.

The application of flexible fiber ureteroscope was first reported by Marshall in 1964. A 9F fiberscope manufactured by American Cystoscope Makers (Pelham Manor, NY) was passed into the ureter to visualize an impacted ureteral calculus. Subsequently, Bagley, Huffman, and Lyon began work at the University of Chicago to develop an improved flexible fiberoptic ureteropyeloscope in the 1980s.

The optical system consists of fiberoptic light bundles created from molten glass. Each glass fiber is cladded with a second layer of glass of different refractive index to improve the internal reflection, light transmission and also the durability of the endoscope. When the fibers are bundled randomly, they provide excellent light transmission for illumination, but no image. However, if the fibers are placed in a coherent fashion, the light from each fiber will coalesce to transmit images. Small lenses placed proximally and distally enable a telescopic effect with image magnification, increased field of view and focusing ability. A recent modification is the splitting of the light bundle distally to enable a more central placed working channel and better distribution of light within the working field of view.[5]

Please log in or register to respond to this discussion.

Related Discussions

...