Numerical Study of Aeroacoustic Sound on Performance of Bladeless Fan
Aeroacoustic performance of fans is essential due to their widespread application. Therefore, the original aim of this paper is to evaluate the generated noise owing to different geometric parameters. In current study, effect of five geometric parameters was investigated on well performance of a Bladeless fan. Airflow through this fan was analyzed simulating a Bladeless fan within a 2 m×2 m×4 m room. Analysis of the flow field inside the fan and evaluating its performance were obtained by solving conservations of mass and momentum equations for aerodynamic investigations and FW-H noise equations for aeroacoustic analysis. In order to design table bladeless fan Eppler 473 airfoil profile was used as the cross section of this fan. Five distinct parameters, namely height of cross section of the fan, outlet angle of the flow relative to the fan axis, thickness of airflow outlet slit, hydraulic diameter and aspect ratio for circular and quadratic cross sections were considered. Validating acoustic code results, we compared numerical solution of FW-H noise equations for NACA0012 with experimental results. FW-H model was selected to predict the noise generated by the Bladeless fan as the numerical results indicated a good agreement with experimental ones for NACA0012. To validate 3-D numerical results, the experimental results of a round jet showed good agreement with those simulation data. In order to indicate the effect of each mentioned parameter on the fan performance, SPL and OASPL diagrams were illustrated.
Nowadays, the axial and radial fans are employed for various applications, such as cooling systems, air conditioning, ventilation of underground spaces, etc. The aeroacoustic performance of fans have been improved by increasing advancements in the computational fluid dynamics (CFD) and economic growth, then different types of fans with various applications and higher efficiency is offered. In 2009, a new fan was invented that its appearance and performance was different from conventional fans. The main differences of this fan with respect to conventional fans (axial and radial fans) are the multiplying intake air flow and lack of observable impeller [1]. This fan namely Bladeless/Air Multiplier fan was named on the basis of the two mentioned features. Until now, this fan is manufactured for domestic applications by diameter of 30 cm.